Hadoop job (YARN Staging) error while executing simple job

In a Hadoop eco-system, no.of jobs are executing in a fraction of time in that time. I am trying to execute the Hive job for Data validation in Hive server in Production server. While executing a Hive job in the hive command line I got this type of error.



at org.apache.hadoop.ipc.Client.call(Client.java:1468)
at org.apache.hadoop.ipc.Client.call(Client.java:1399)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:232)
at com.sun.proxy.$Proxy9.addBlock(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.addBlock(ClientNamenodeProtocolTranslatorPB.java:399)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy10.addBlock(Unknown Source)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.locateFollowingBlock(DFSOutputStream.java:1532)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.nextBlockOutputStream(DFSOutputStream.java:1349)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:588)
22:33:33 INFO mapreduce.JobSubmitter: Cleaning up the staging area /tmp/hadoop-yarn/staging//.staging/job_1562044010976_0003
Exception in thread "main" org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /tmp/hadoop-yarn/staging//.staging/job_1562044010976_0003/job.jar could only be replicated to 0 nodes instead of minReplication (=1). There are 1 datanode(s) running and no node(s) are excluded in this operation.
at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1549)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:3200)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:641)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.addBlock(ClientNamenodeProtocolServerSideTranslatorPB.java:482)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:619)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:962)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2039)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2035)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2033)

The above error belongs to a connection error in Datanode while executing the code. At the time Datanode not running properly. so find below resolution for this issue:

Stop all services:

stop-all.sh
start-all.sh

Here restart all services including Namenode, Secondary Namenode, DataNodes and remaining services like Hive, Spark,
etc.

If still showing this type of error then start the distributed file system.

start-dfs.sh

Check all the Hadoop Daemons like Name node, Secondary Name node, Datanode, Resource Manager and Node Manager, etc. By using below command

jps

And then check All node information by using “hadoop dfsadmin -report ” for the status of the Datanode whether it is running fine or not.

Above steps for Local, Pseudo distributed,  and standalone mode only in Hadoop eco-system.

For Cloudera, Hortonworks, MapR distributions are simply “Restart” DataNodes and Services like Hive, Spark, etc.




Summary: In Big Data environment we executing so many jobs like Hadoop/Spark/Hive for the result but some times showing above error. At the time we stuck but here the simple solution for the above error

Leave a Reply

Your email address will not be published. Required fields are marked *